issue135:faire_des_recherches_avec_linux
Différences
Ci-dessous, les différences entre deux révisions de la page.
Prochaine révision | Révision précédente | ||
issue135:faire_des_recherches_avec_linux [2018/08/01 18:17] – créée auntiee | issue135:faire_des_recherches_avec_linux [2018/08/05 11:21] (Version actuelle) – d52fr | ||
---|---|---|---|
Ligne 1: | Ligne 1: | ||
- | I have a dedicated R program for processing data. So, I have downloaded R, and the associated R-studio for my work laptop. The R-studio is a GUI interface for R and is divided into 4 panes. The upper left is the R program that you can import from Leafpad. The lower left is the actual real-time command-line processing. The upper right is publishing the rights for the statistical outputs and tables for journal abstracts. The lower right is the produced tables. | + | **I have a dedicated R program for processing data. So, I have downloaded R, and the associated R-studio for my work laptop. The R-studio is a GUI interface for R and is divided into 4 panes. The upper left is the R program that you can import from Leafpad. The lower left is the actual real-time command-line processing. The upper right is publishing the rights for the statistical outputs and tables for journal abstracts. The lower right is the produced tables. |
R has the capability of creating a Shiny app which is an online capability for the R programs that you use. It is now possible to be connected to your R programs using a web browser. The Shiny app replaces a previous Perl Batch program. The batch program required 2 hrs, the Shiny app does the same amount of work in 20 minutes. | R has the capability of creating a Shiny app which is an online capability for the R programs that you use. It is now possible to be connected to your R programs using a web browser. The Shiny app replaces a previous Perl Batch program. The batch program required 2 hrs, the Shiny app does the same amount of work in 20 minutes. | ||
- | The Shiny app then generates a pdf of the waveform plots (as seen in the lower right) and the associated critical points. The Shiny app works well, but there are a few “bugs” in the R-code written by my biostatistician so the app is not perfect; however it saves time and removes technician bias in data processing. Yet it does a great job of generating the data spreadsheets for the pressure and motion data sets needed. An example spreadsheet below. | + | The Shiny app then generates a pdf of the waveform plots (as seen in the lower right) and the associated critical points. The Shiny app works well, but there are a few “bugs” in the R-code written by my biostatistician so the app is not perfect; however it saves time and removes technician bias in data processing. Yet it does a great job of generating the data spreadsheets for the pressure and motion data sets needed. An example spreadsheet below.** |
- | Onto gnuplot | + | J'ai un programme R dédié pour le traitement de données. J'ai donc téléchargé R, ainsi que R-studio, pour mon ordinateur portable au travail. R-studio, une interface graphique pour R, est divisé en quatre fenêtres. En haut à gauche, il y a le programme R que vous pouvez importer à partir de Leafpad. En bas à gauche, le véritable traitement des commandes s' |
+ | |||
+ | R peut créer une appli Shiny, qui est une solution en ligne pour les programmes R que vous utilisez. Actuellement, | ||
+ | |||
+ | Ensuite, l' | ||
+ | |||
+ | **Onto Gnuplot | ||
I read the starting pages on a rather dry subject: statistics. There are 2 software developers’ forewords, an ‘about this book’, 15 chapters, and an appendix. The starting paragraphs have important background and historical information on Gnuplot. Yet it does not cover the real story. I jumped into Chapter 1, and it is quite light with a 15 page span. | I read the starting pages on a rather dry subject: statistics. There are 2 software developers’ forewords, an ‘about this book’, 15 chapters, and an appendix. The starting paragraphs have important background and historical information on Gnuplot. Yet it does not cover the real story. I jumped into Chapter 1, and it is quite light with a 15 page span. | ||
- | Luckily, Gnuplot is part of the RPM and Debian repositories. I changed to root and installed gnuplot via terminal – which was an incredibly smooth process. I searched the menus and did not see an app icon. I rebooted, right-clicked, | + | Luckily, Gnuplot is part of the RPM and Debian repositories. I changed to root and installed gnuplot via terminal – which was an incredibly smooth process. I searched the menus and did not see an app icon. I rebooted, right-clicked, |
+ | |||
+ | Chapter 1 merely reviews the scope and capabilities of Gnuplot. It a simple 15 pages that goes into a brief description of commands. The authors use an example of planning a morning marathon and staffing issues. Essentially, | ||
+ | |||
+ | Passons maintenant à Gnuplot. | ||
+ | |||
+ | J'ai lu les premières pages concernant un sujet assez aride : les statistiques. Il y a deux avant-propos de développeurs de logiciels, une présentation du livre, 15 chapitres et un appendice. Les paragraphes initiauxt contiennent des informations de base et historiques concernant Gnuplot. Pourtant, la vérité est omise. Je me suis lancé dans le premier chapitre, qui est assez léger avec seulement 15 pages. | ||
+ | |||
+ | Heureusement, | ||
- | Chapter 1 merely reviews the scope and capabilities of Gnuplot. | + | Le premier chapitre ne donne qu'un aperçu de la portée et des capacités de Gnuplot. |
issue135/faire_des_recherches_avec_linux.1533140251.txt.gz · Dernière modification : 2018/08/01 18:17 de auntiee